Пробуждение богов (lady_dalet) wrote,
Пробуждение богов
lady_dalet

Categories:

Мнимый мир казался им настоящим, а действительность они перестали видеть и понимать.

.

Избавиться от «долга» невозможно иначе, чем наращивая «имущество», а разоряя равного, ты разоряешь сам себя, – таков закон воздаяния.
.

И это блестяще описывается в символах: а + b = b + а (и у тебя, и у него, равного тебе, «имущества» поровну). Но ты захотел, нарушив равенство ваше, перенести к себе его «имущество» (через знак равенства) а + b – а = b. Получилось разорение, потому что его «имущество», перейдя к тебе, стало не «имуществом» твоим, а твоим «долгом». Захочешь взять ещё – разоришь его и себя.
.
Нарушив равенство, ты утратил ровно столько, сколько отнял у равного тебе.
.
И если было 3 + 2 = 2 + 3, т.е. 5 = 5, то в результате твоих преобразований (3 + 2 – 2 – 3 = 0) станет 0 = 0, но согласись, это совсем не одно и то же.


*   *   *

Как математика объясняет иллюзорность нашего мира.

Следующие «коррективы» внёс Ас-Самавал (XII в.). Свой труд он сочинил в 19 лет: первым изложил правила обращения с отрицательными числами, не прибегая к большей положительной величине, из которой они обычно вычитались. Действовал с размахом:

– (–ахn) = axn;
–axn – (bxn) = –(a+b)xn


Так в символах было изложено кредо: хорошо бы существовать исключительно за счёт «долгов», вообще не создавая «имущества», да ещё и математически узаконить такой образ жизни.

Отрицательные числа появились именно в торговых расчётах.


пример

Если купец имеет 3000 р., а закупает на 5000 р., то он остаётся в долгу на 2000 р. В соответствии с этим считали, что здесь совершается вычитание 3000 – 5000, результатом же является число 2000 (с точкой наверху), означающее «две тысячи долга».

В этом примере вещи не названы своими именами: купец в данный момент не «купил», а забрал чужое, не заплатив. Так что появление отрицательных чисел обусловлено было нечестными торговыми сделками и ложными определениями.

Кубические уравнения. Их нельзя решать в принципе, потому что это вообще не математика – действия с неоднородными величинами в математике запрещены. А в кубических уравнениях в результате «подковёрных» манипуляций с числами с помощью радикалов, отрицательных и комплексных чисел вдруг выныривают «отмытые» корни.
Отрицательные числа представляют собой отображение принципа «взять больше, чем дать», или даже «взять, ничего не давая». Чрезвычайно интересны объяснения того, почему с таким упорством отрицательные числа «завоёвывали права гражданства»:


пример

6, 5, 4, 3, 2, 1, – дальнейшее вычитание даёт уже «отсутствие числа», а дальше уже не из чего вычитать. Если же мы хотим сделать вычитание всегда возможным (т.е. забирать, не давая. – Прим. авт.) мы должны:

1) «отсутствие числа» считать также числом (нуль);
2) от этого последнего числа считать возможным отнять ещё единицу и т.д. Так мы получаем новые числа: –1, –2, –3 и т.д. (Т.е. на место математического Закона поставить междусобойные договоры и условия. Подменить математику.)



Михаэль Штифель (1487–1567) продолжил арифметическую прогрессию в область отрицательных чисел, которые назвал «меньшие, чем ничто». В геометрических прогрессиях у него вдруг появилисьотрицательные показатели степени, которым он приписал роль якобы симметричную роли положительных показателей.

Рафаэль Бомбелли (1526–1572) дал определение отрицательным числам, хотя все математики того времени считали отрицательные числа ложными, невозможными, и выдумал правила обращения с ними. Его отличали «ловкость и мастерство, с которыми он формально манипулировал корнями из отрицательных чисел». Это было шулерство. Он тоже ввёл свои выдуманные числа путём заявления, назвав это «аксиомами». (Попутно списал у Диофанта ~ 140 задач: включил в свой трактат, не указав автора.) А придумал он корень квадратный из отрицательного числа назвать «плюс из минуса» и «минус из минуса». И дал правила умножения этого кошмара, чтобы пристегнуть софистические числа к натуральным. А ввёл софизмы, конечно же, через нуль. Его книги изучали Лейбниц, Эйлер.

Главная цель манипуляций всей этой К° – выстроить мнимый мир и выдать его за истинный, приравнять к истинному, вписать с помощью математических символов в настоящий. Для достижения цели очень пригодилась алгебра, т.к. за буквенной символикой легче было прятать фантомы.
.
Симон Стевин (1548–1620) ввёл десятичные дроби и отрицательные корни уравнений. Он развил бурную деятельность, чтобы заставить всех признать иррациональности полноправными числами.
.
Отрицательные числа получили широкое распространение только после введения Декартом координатной оси. Сам метод координат был известен с глубокой древности, его применяли мореплаватели, но никому не могло прийти в голову определить своё место на планете с помощью отрицательных чисел. Декарт же ввёл нуль вместо точки отсчёта, через него протащил отрицательные числа, а также «уравнял» между собой в своей системе координат величины разных измерений, сведя все их к отрезку.

.
Так выстраивали логисты мнимый мир, в котором нули казались бы числами, а долги – имуществом. Этот мир был точным отображением мира людей. В этом кошмарном мире люди (лат. ludus – игра) казались сами себе действительно существующими, они манипулировали цифрами, выдумав свои законы манипуляций.
.
Мнимый мир казался им настоящим, а действительность они перестали видеть и понимать.

Автор: Светлана Рябцева



Спасибо за наводку o_san_na

Tags: математика
Subscribe

  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 26 comments